Consumer Confidence Report

This report is designed to inform you about the quality of water CWSC delivers to you every day. Our number one goal is to provide you and your family a safe and dependable supply of drinking water. Our 22 employees strive to deliver a quality product and protect the County’s precious water resources.

To ensure the safety of your water, CWSC routinely monitors for contaminants in your drinking water according to Federal and State laws, rules and regulations. Except where indicated otherwise, this water Consumer Confidence Report is based on the results of CWSC monitoring for the period of January 1, 2015 to December 31, 2015. Data obtained before January 1, 2015 and presented in this publication are from the most recent testing done in accordance with the laws, rules and regulations.

How can I get involved?

Please feel free to participate in these meetings.

For Customers with Special Health Concerns

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from the health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Board Members:

District 5 - Gene Stokes – President
District 9 - Kim Spellman – Vice President
District 1 - Frank Wilson – Sec/Treas.
District 2 - Garry Holcomb
District 7 - David Burk
District 4 - Jimmy Gardner
District 6 - Jerry Ray Bobbitt
District 8 - Jack Crow
At Large – Cathy Merriwither

CONSOLIDATED
WSC
401 NE Loop 304
Crockett, Texas
75835
Consolidatedwsc.com
Additional Information About Your Water

The source of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radio-active material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in sour water include:

- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharge, oil and gas production, mining, or farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses.

- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- **Radioactive contaminants**, which can be naturally occurring or be the result of oil and gas production and mining activities.

What Should You Know About Certain Contaminants?

Radon

Radon 222 or radon for short, is colorless, odorless gas that occurs naturally in soil, air and water. Radon is formed from the radioactive decay products of natural uranium that is found in many soils. Most radon in indoor air come from the soils below the foundation or the home, and in some locations can accumulate to dangerous levels in the absence of proper ventilation. In most homes the health risk from radon is drinking water is very small compared to the health risk from radon in indoor air. For more information, call the EPA’s Radon Hotline at 1-800-SOS-Radon.

Nitrate

Although the level of nitrate (refer to the table on water quality data) is consistently below the health effect level, the EPA requires the following information be included in this report: “Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue-baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.

Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Consolidated WSC is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water you may wish to have water tested. Information on lead in drinking water testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or at http://www.epa.gov/safewater/lead
The Consolidated WSC
Consolidated WSC 287 South
Plant K
ID# 1130038

Where Your Drinking Water Comes From

Your water is ground water that comes from a well located on State Highway 7 East. This well is about 680 feet it is in Carrizo-Wilcox Aquifer. The Carrizo-Wilcox Aquifer is a major aquifer extending from the Louisiana border to the border of Mexico in a wide band adjacent to and northwest of the Gulf Coast Aquifer. It consists of the Wilcox Group and the overlying Carrizo Formation of the Claiborne Group. The aquifer is primarily composed of sand locally interbedded with gravel, silt, clay, and lignite. Although the Carrizo-Wilcox Aquifer reaches 3,000 feet in thickness, the freshwater saturated thickness of the sands averages 670 feet.

The groundwater, although hard, is generally fresh and typically contains less than 500 milligrams per liter of total dissolved solids in the outcrop, whereas softer groundwater with total dissolved solids of more than 1,000 milligrams per liter occurs in the subsurface. High iron and manganese content in excess of secondary drinking water standards is characteristic of the deeper subsurface portions of the aquifer. Parts of the aquifer in the Winter Garden area are slightly to moderately saline, with total dissolved solids ranging from 1,000 to 7,000 milligrams per liter.

Irrigation pumping accounts for slightly more than half the water pumped, and pumping for municipal supply accounts for another 40 percent. Water levels have declined in the Winter Garden area because of irrigation pumping and in the northeastern part of the aquifer because of municipal pumping.

<table>
<thead>
<tr>
<th>Population Type</th>
<th>Population Served</th>
<th># of Connect (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>507</td>
<td>192</td>
</tr>
</tbody>
</table>

Consolidated WSC Treatment for Plant K 287 South is Chlorination.
In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily caused for health concerns. For more information on taste, odor, or color of drinking water, please contact Consolidated Water Supply Corp. business office at 936-544-2986.

Information about Source Water Assessments
Source Water Susceptibility Assessment for your drinking water Source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies. More information about your sources of water, please refer to the Source Water Assessment View available at the following:

http://www.tceq.state.tx.us

http://www.tceq.state.tx.gov/DWW

http://www.tceq.state.tx.us/drinkingwater

http://www.tceq.state.us/drinkingwater/SWAP

http://www.tceq.state.tx.us:/permitting/water_supply/pdw/pdw_contact.html

SWSA Result interpretation:
HIGH: There are activities near the source water and the natural conditions of the aquifer or watershed make it likely that chemical constituents may come into contact with the source water. **It does not mean that there are any health risks present.**
MEDIUM: There are activities near the source water and the natural conditions of the aquifer or watershed make it somewhat likely that chemical constituents may come contact with the source water. **It does not mean that there are any health risks present.**
LOW: There are activities near the source water and the natural conditions of the aquifer or watershed make it unlikely that chemical constituents may come contact with the source water. **It does not mean that there are any health risks present.**
Drinking Water Definitions

- **Maximum Contaminant Level (MCL):** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

- **Maximum Contaminant Level Goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

- **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water.

- **Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

- **Maximum Residual Disinfectant Level (MRDL):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

- **Maximum Residual Disinfectant Level Goal (MRDLG):** The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.
Data Table Key: Unit Descriptions

- **AL**: Action Level
- **MCL**: Maximum Contaminant Level
- **MCLG**: Maximum Contaminant Level Goal
- **MFL**: million fibers per liter
- **mrem/year**: millirems per year (a measure of radiation absorbed by the body)
- **mg/L**: number of milligrams of substance in one liter of water
- **ppm**: parts per million, or milligrams per liter
- **ppb**: parts per billion, or micrograms per liter
- **ppt**: parts per trillion, or nanograms per liter
- **ppq**: parts per quadrillion, or pictograms per liter
- **pCi/L**: picocuries per liter (a measure of radioactivity)
- **NA**: not applicable
- **ND**: not detected
- **NR**: monitoring not required, but recommended
- **NTU**: Nephelometric Turbidity Units
- **TT**: Treatment Technique
Disinfectant Residual Table

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>Year</th>
<th>Average Level</th>
<th>Minimum Level</th>
<th>Maximum Level</th>
<th>MRDL</th>
<th>MRDLG</th>
<th>Unit of Measure</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>2016</td>
<td>1.70</td>
<td>1.0</td>
<td>2.70</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>Y</td>
<td>Water additive used to control microbes.</td>
</tr>
</tbody>
</table>

Regulated Detected Contaminants Table

Disinfectants and Disinfection By-Products

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloacetic Acids (HAA5)</td>
<td>2016</td>
<td>2</td>
<td>2.7 – 2.9</td>
<td>No goal for the total</td>
<td>60</td>
<td>ppb</td>
<td>Y</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM)</td>
<td>2016</td>
<td>3</td>
<td>4.37 – 5.54</td>
<td>No goal for the total</td>
<td>80</td>
<td>ppb</td>
<td>Y</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>2/10/2015</td>
<td>0.062</td>
<td>0.062</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>N</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium</td>
<td>2/10/2015</td>
<td>1.2</td>
<td>1.2 – 1.2</td>
<td>100</td>
<td>100</td>
<td>ppb</td>
<td>N</td>
<td>Discharge from steel and pulp mills; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Flouride</td>
<td>2/10/2015</td>
<td>0.0645</td>
<td>0.0645 – 0.0645</td>
<td>4</td>
<td>4.0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Nitrate [measured as Nitrogen]</td>
<td>2016</td>
<td>0.0195</td>
<td>0.0165 – 0.0195</td>
<td>10</td>
<td>10</td>
<td>Ppm</td>
<td>N</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Selenium</td>
<td>2/10/2015</td>
<td>0.0016</td>
<td>0.0016</td>
<td>50</td>
<td>50</td>
<td>ppb</td>
<td>N</td>
<td>Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.</td>
</tr>
</tbody>
</table>
Lead and Copper Table

<table>
<thead>
<tr>
<th>Lead and Copper</th>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)</th>
<th>90th Percentile</th>
<th># Sites Over AL</th>
<th>Units</th>
<th>Violation (Y/N)</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>2016</td>
<td>1.3</td>
<td>1.3</td>
<td>0.035</td>
<td>0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.</td>
</tr>
</tbody>
</table>

Violations Table

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosively. Lead and copper enter drinking water mainly from corrosion of lead and copper plumbing materials.

<table>
<thead>
<tr>
<th>Violation Type</th>
<th>Violation Begin</th>
<th>Violation End</th>
<th>Violation Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Consumer Notice (LCR)</td>
<td>12-30-2016-</td>
<td>02-08-2017</td>
<td>We failed to provide the results of lead tap water monitoring to the consumers at the location water was tested. These were supposed to be provided no later than 30 days after learning the results.</td>
</tr>
</tbody>
</table>
Protection of drinking water is everyone’s responsibility. You can help protect your community’s drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides – they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA’s Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network’s How to Start a Watershed Team.

Water conservation Tips for Consumers

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature.

- Take short showers – a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They are inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water Plants only when necessary.
- Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check you toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps in the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month’s water bill!
- Visit www.epa.gov/watersense for more information.